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Abstract. We reanalyze B → Dπ and B → KJ/ψ data to extract a set of parameters which give the
relevant hadronic matrix elements in terms of factorized amplitudes. Various sources of theoretical uncer-
tainties are studied, in particular those depending on the model adopted for the form factors. We find that
the fit to the B → Dπ branching ratios substantially depends on the model describing the Isgur-Wise func-
tion and on the value of its slope. This dependence can be reduced by substituting the BR(B → Dπ) with
suitable ratios of non-leptonic to differential semileptonic BRs. In this way, we obtain a model-independent
determination of these parameters. Using these results, the B → D form factors at q2 = M2

π can be ex-
tracted from a fit of the BR(B → Dπ). The comparison between the form factors obtained in this way and
the corresponding measurements in semileptonic decays can be used as a test of (generalized) factorization
free from the uncertainties due to heavy-heavy form factor modeling. Finally, we present predictions for
as-yet-unmeasured Dπ and DK branching ratios and extract fDs and fD∗

s
from B → DDs decays. We

find fDs = 270 ± 45 MeV and fD∗
s

= 260 ± 40 MeV, in good agreement with recent measurements and
lattice calculations.

1 Introduction

A problem of utmost importance in B phenomenology
is the computation of the hadronic amplitudes: in recent
years it has been realized that the full determination of the
unitarity triangle from B decays can hardly be carried out
without an accurate knowledge of these quantities [1,2].
Unfortunately, the computation of hadronic amplitudes
requires an understanding of low-energy strong interac-
tions which is missing at present. Even a non-perturbative
approach based on first principles, such as lattice QCD,
fails in computing decay amplitudes involving two or more
hadrons in the final state [3].

In the absence of rigorous methods, some simplifying
approaches have been developed. The most popular one
consists in the factorization of matrix elements of four-
fermion operators in terms of local products of two cur-
rents. In this approach, the original matrix element is com-
puted as product of the matrix elements of the two cur-
rents. Attempts to give theoretical soundness to this pro-
cedure in the framework of the 1/N expansion and of the
Large Energy Effective Theory (LEET) can be found in [4,
5]. Unfortunately, there are many problems in both these
approaches and their applicability to exclusive decays is
questionable. Independently of any theoretical prejudice,
there is a priori no reason for this approximation to be
accurate in the case of B decays. Indeed, none of the ex-
pansions developed so far was able to compute corrections
to the lowest order results and estimate the size of the er-
rors. On the other hand, the importance of controlling

the theoretical uncertainties calls for some phenomeno-
logical approach to test predictions obtained using factor-
ized amplitudes. To this end, a popular method consists
in reducing the Wick contractions of matrix elements to a
few topologies using Fierz transformations and color rear-
rangement. Then, the remaining amplitudes are factorized
and expressed in terms of the appropriate decay constants
and/or form factors. In this procedure, some phenomeno-
logical parameters are introduced in order to account for
possible deviations from factorization [1,6,7]. These fac-
torization parameters, denoted as FP in the following, are
meant to be fitted to experimental data.

In this paper, we introduce a parameterization of the
hadronic matrix elements that extends the one of [1] and
allows the computation of the hadronic amplitudes rele-
vant to Cabibbo-allowed non-leptonic B decays in terms
of factorized matrix elements and of three real FP. We find
that, in the fit of the BR(B → Dπ) and BR(B → KJ/Ψ),
there is a strong interplay between the values of the FP
and the model used for the heavy-heavy form factors,
more specifically on the Isgur-Wise (IW) function and
its slope ρ2 1. This implies that factorization tests are
obscured by our ignorance of the values of the form fac-
tors in the kinematical region relevant in non-leptonic de-
cays (q2 � q2

max). The model dependence is drastically

1 Here, and in the following, unless explicitly stated other-
wise, B → Dπ denotes generically a full set of decays of B
mesons into a charmed and a light meson, i.e.,Bd → π+D−,
Bd → ρ+D−, B+ → π+D̄∗0, etc.
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Table 1. Values of B → D form factors determined by fit-
ting the B → Dπ data with two different models, as explained
in the text below. The ranges in square brackets correspond
to variations of χ2/dof up three times larger than its mini-
mum. We find that form factors at q2 = M2

π already verify the
kinematical relation f0 = f+ and A3 = A0 valid at q2 = 0

Form Factor LINSR NRSX
f+(M2

π) 0.56 [0.49–0.63] 0.57 [0.52–0.63]
V (M2

π) 0.68 [0.61–0.73] 0.75 [0.69–0.81]
A0(M2

π) 0.59 [0.54–0.64] 0.58 [0.54–0.63]
A1(M2

π) 0.59 [0.53–0.64] 0.56 [0.52–0.61]
A2(M2

π) 0.59 [0.53–0.64] 0.54 [0.49–0.58]

reduced by using, in the fit, suitable ratios of semileptonic
and non-leptonic BRs (to be introduced below) instead
of the BR(B → Dπ) alone. In this way, we are able to
extract (almost) model independent FP. With these FP
at hand, we use then the BR(B → Dπ) to determine,
within a given model, the value of ρ2 which may be com-
pared, as a test of factorization, to the one measured in
semileptonic decays. The value of ρ2 extracted from the
fit depends, however, on the model used for the form fac-
tors. Different values of ρ2 compensate, indeed, for the dif-
ferent dependence of the theoretical form factors on the
momentum transfer, thus giving the same values for the
matrix elements of the weak currents at low q2. We con-
clude that the quantities to be compared with the corre-
sponding ones in semileptonic decays are the form factors
themselves in the region of q2 relevant in non-leptonic de-
cays (e.g.,q2 = M2

π ∼ 0 for B → Dπ decays). This is a
real test of factorization, free from model uncertainties.
The values of the form factors extracted from our analysis
are given in Table 1. In principle, one may extract the five
form factors of Table 1 independently. However, in our
analysis, all the form factors are related to the IW func-
tion through the heavy quark symmetry. Consequently,
the only B → D form factor measured so far at small q2,
f+(0), already allows a full test of our approach. Its ex-
perimental value, f+(0) = 0.66 ± 0.06 ± 0.04 [8] is in good
agreement with our findings. Measurements of the other
form factors entering B → D∗ semileptonic decays would
check the relations enforced by the heavy quark symmetry.

The determination of the FP also allows us to predict
several BRs, including B → DK, which have not been
measured yet. Our predictions are presented in Table 2.

Finally, using ratios of non-leptonic BRs involving D(∗)

D
(∗)
s final states and the FP and form factors from the pre-

vious fits, we extract the meson decay constants fDs
and

fD∗
s
, obtaining

fDs = 270 ± 45 MeV, fD∗
s

= 260 ± 40 MeV, (1)

in good agreement with recent experimental measure-
ments fDs = 250±30 MeV [9] and lattice determinations,
fDs

= 218+20
−14 MeV (quenched), fDs

= 235+22+17
−15−9 MeV

(unquenched) [10], and fD∗
s

= 240 ± 20 MeV (preliminary
quenched) [11]. We also study the contribution of charm-

Table 2. Predictions of yet-unmeasured branching ratios

Channel LINSR NRSX Experiment
[BR× 105] [BR× 105] [BR× 105]

Bd → π0D̄0 14 [1–58] 10 [2–27] < 12
Bd → π0D̄∗0 15 [1–63] 13 [2–35] < 44
Bd → ρ0D̄0 6 [1–26] 7 [1–19] < 39
Bd → ρ0D̄∗0 17 [2–71] 14 [2–38] < 56
Bd → K+D− 22 [13–38] 23 [16–32] –
Bd → K+D∗− 22 [14–37] 22 [16–30] –
Bd → K∗+D− 53 [32–90] 53 [38–75] –
Bd → K∗+D∗− 67 [43–110] 64 [46–88] –
B+ → K+D̄0 35 [12–54] 35 [18–45] 29 ± 10
B+ → K+D̄∗0 36 [13–54] 35 [17–44] –
B+ → K∗+D̄0 67 [34–100] 69 [42–88] –
B+ → K∗+D̄∗0 87 [46–126] 83 [51–104] –
Bd → K0D̄

0 1.4 [0.2–5.7] 1.0 [0.2–2.7] –
Bd → K0D̄

∗0 1.5 [0.2–6.2] 1.3 [0.2–3.4] –
Bd → K∗0D̄0 0.6 [0.1–2.7] 0.7 [0.1–1.8] –
Bd → K∗0D̄∗0 1.7 [0.2–7.2] 1.4 [0.2–3.6] –

ing penguins [1] and discuss their effects on the predictions
for the decay constants, which we find non-negligible.

The paper is organized as follows. In Sect. 2 we in-
troduce our FP and two different models for the form
factors to be used in the phenomenological analysis. Sec-
tion 3 contains the main results of our fits to the B → Dπ
and B → KJ/Ψ branching ratios, namely the determina-
tion of the FP, the analysis of their ρ2 dependence, and
the extraction of the B → D and B → D∗ form fac-
tors at q2 = M2

π . The results of these fits have been used
for the predictions of as-yet-unmeasured BRs, including
many B → DK modes. Finally, in Sect. 4, we analyze
the B → DDs modes and extract fDs

and fD∗
s
, giving an

estimate of the theoretical error which includes charming-
penguin effects.

2 Factorization, FP and form-factor models

In this section, we present our parameterization of the
hadronic amplitudes and discuss its relation with other
popular choices. We also introduce two different models
for the form factors used in our phenomenological analysis.

Consider the matrix element of some composite opera-
tor appearing in the ∆B = 1 weak Hamiltonian, between
the B meson and two final pseudoscalar or vector mesons.
In general, this operator can be written as the product of
two currents. If one of the currents has the correct quan-
tum numbers to create one of the final state mesons from
the vacuum, then the matrix element can be factorized.
The physical idea is the following: the quark pair produced
by this current acts as a color dipole, weakly interacting
with the surrounding color field. If the transferred energy
is large, the quark pair has no time to interact before
hadronizing far from the interaction point [12].
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As an example, we discuss the factorization of the am-
plitudes entering the decay Bd → D−π+. In this case, the
two relevant matrix elements (α and β are color indices)

〈D−π+|Q1|Bd〉
= 〈D−π+|b̄αγµ(1 − γ5)cβ ūβγµ(1 − γ5)dα|Bd〉,
〈D−π+|Q2|Bd〉
= 〈D−π+|b̄αγµ(1 − γ5)cα ūβγµ(1 − γ5)dβ |Bd〉, (2)

can be Wick-contracted according to two different topolo-
gies, that are usually denoted as connected (CE) and dis-
connected (DE) emissions, respectively. Color indices can
be rearranged using the algebraic relation,

δαβδρσ =
1
N

δασδρβ + 2taασtaρβ , (3)

where N is the number of colors, δ is the Kronecker sym-
bol, and the ta are the SU(N) color matrices in the fun-
damental representation, normalized as tr(tatb) = δab/2.
Using this relation, one obtains

= 1
N

+2
ta

ta

CE DE octet terms

In the factorization limit, no gluon exchange occurs be-
tween the quark pair of the emitted meson and the other
quarks, so that the octet terms vanish and the relation
between DE and CE becomes simply CE = DE/N . Ex-
act factorization is known to fail, however, in reproduc-
ing D phenomenology [13]. For this reason, it is custom-
ary to introduce several phenomenological parameters to
account for octet terms (and in general for the different
sources of factorization violation). These parameters may
be extracted from the experimental data. An example is
provided by the generalized factorization of [7]. In this
case the relevant contractions are rewritten, without loss
of generality, as

DE = (1 + ε1)DEfact ,

CE =
(

1
N

+
ε8

1 + ε1

)
(1 + ε1)DEfact , (4)

where the two parameters, ε1 and ε8, vanish in the factor-
ization limit.

In this paper, following [1], we adopt a different pa-
rameterization, given by

DE = αDEfact, CE = αeiδξξDEfact, (5)

where DE and CE are given in terms of three real pa-
rameters α, ξ and δξ. Note that there is no inconsistency
between the two parameterizations: in general, there are
three real parameters, namely, two moduli |DE|, |CE|,
and one relative phase, arg(CE) − arg(DE). These corre-
spond to our three real parameters α, ξ and δξ or to the

two complex parameters ε1 and ε8 in (4), one of which
can always be chosen real. The relation between the two
sets of parameters is given by

α = 1 + ε1, ξeiδξ =
1
N

+
ε8

1 + ε1
. (6)

As recently stressed in [14], these phenomenological
parameters are renormalization scale and scheme depen-
dent, as much as the original matrix elements, since the
factorized amplitudes are insensitive to both the scale
and the scheme. This dependence is required to cancel
the corresponding dependence in the Wilson coefficients,
up to the order at which the perturbative calculation is
done. Note that, in order to study the scale dependence
of the parameters, the next-to-leading order (NLO) deter-
mination of the effective Hamiltonian is required. Being
scheme-dependent, any physical interpretation of the “fac-
torization scale”, namely of the renormalization scale (if it
really exists) at which exact factorization holds, is mean-
ingless. Nevertheless, the FP can be precisely extracted
from data, once the renormalization scale and the scheme
are fixed. Their values will depend, of course, on these
choices. We will use the NDR-MS NLO Wilson coefficients
computed at µ = 5 GeV, as given in [15]. In the following,
it is understood that we determine α, ξ and δξ using this
choice of the scale and of the renormalization scheme.

After the introduction of the FP, the only amplitude
that remains to be computed, namely

DEfact = 〈D−π+|b̄γµ(1 − γ5)c ūγµ(1 − γ5)d|Bd〉|fact

= 〈D−|b̄γµ(1 − γ5)c|Bd〉〈π+|ūγµ(1 − γ5)d|0〉 ,

(7)

can be easily expressed in terms of the B → D semilep-
tonic form factors and of the decay constant fπ.

In this example, only left-handed currents appear. In
general, also considering penguin operators, there are di-
agrams involving different Dirac structures, e.g., γµ(1 −
γ5) ⊗ γµ(1 + γ5) and (1 − γ5) ⊗ (1 + γ5). In the case in
interest, the right-handed current always appears in the
matrix element of the emitted meson, 〈M |q̄γµ(1+γ5)q′|0〉,
while the current entering the other matrix element is al-
ways left-handed. Therefore, only the vector or the axial
current separately contributes, depending on the quan-
tum numbers of the emitted meson. Consequently, assum-
ing that both left-left and left-right operators can be de-
scribed with the same set of FP, the relation between the
corresponding matrix elements becomes trivial. Similarly,
matrix elements of operators with a (1 − γ5) ⊗ (1 + γ5)
Dirac structure can be connected to the current-current
ones via the vector and axial vector Ward identities 2.
In summary, using factorization, one only needs to com-
pute matrix elements of currents, that can be expressed
in terms of form factors and/or decay constants. How-
ever, these relations among insertions of different Dirac

2 In this case the amplitudes depend on the quark masses
which we take to be defined in the same renormalization
scheme, and at the same scale µ, as the four-fermion opera-
tors.
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structures only hold for factorized amplitudes. By using
only one set of FP, we implicitly assume that the same
relations hold for the original four-fermion operator ma-
trix elements. This simplifying assumption allows us to
account for penguin-operator contributions using factor-
ization, albeit in a model-dependent way.

In our analysis, we use the same FP for: i) matrix el-
ements connected by SU(2) flavor symmetry; ii) matrix
elements with the same quark content, differing only for
the angular momentum of the final hadrons. The first as-
sumption has sound phenomenological motivations; the
second is reasonable since some of the differences among
matrix elements with pseudoscalar and/or vector meson
final states are already accounted for by factorized matrix
elements.

For a generic transition B → P (V ) of a B going into
a pseudoscalar (vector) meson of mass M , momentum p
(and polarization ε), the form factors in the helicity basis
are defined as

〈P (p)|V̂µ|B(pB)〉 = f+(q2)

{
(p + pB)µ − qµ

M2
B − M2

q2

}

+f0(q2)qµ
(M2

B − M2)
q2 ,

〈V (p, ε)|V̂µ|B(pB)〉 =
2i

MB + M
εµναβε∗νpαpβ

BV (q2), (8)

〈V (p, ε)|Âµ|B(pB)〉 = 2MA0(q2)qµ
ε∗ · q

q2

+A1(q2)(MB + M)

{
ε∗
µ − qµ

ε∗ · q

q2

}

− A2(q2)
MB + M

{
(pB + p)µε∗ · q

−qµ
ε∗ · q

q2 (M2
B − M2)

}
,

where V̂µ and Âµ are the vector and axial currents respec-
tively.

For heavy final mesons, the form factors can be con-
nected to the HQET functions ξi(y), see, for example, [16],
using the following formulas

〈P (v)|V̂µ|B(vB)〉 =
√

MBM
{

ξ+(y)(vB + v)µ

+ξ−(y)(vB − v)µ

}
,

〈V (v, ε)|V̂µ|B(vB)〉 =
√

MBM
{

iξV (y)εµναβε∗νvαvβ
B

}
,

〈V (v, ε)|Âµ|B(vB)〉 =
√

MBM
{

ξA1(y)(y + 1)ε∗
µ

−ξA2(y)(ε∗ · vB)vB µ

−ξA3(y)(ε∗ · vB)vµ

}
, (9)

where vB and v are the 4-velocities of the initial and final
meson respectively and

y ≡ vB · v =
M2

B + M2 − q2

2MBM
. (10)

In the heavy quark limit, the functions ξi(y) are all
related to the IW function ξ(y)

ξ+ = ξV = ξA1 = ξA3 = ξ(y), ξ− = ξA2 = 0, (11)

with the normalization of ξ fixed by the heavy quark sym-
metry, ξ(1) = 1. The ξi(y) can be written as

ξi(y) =
{

αi +
αs(m̄)

π
βi(y) + γi(y)

}
ξ(y), (12)

where the functions βi(y) and γi(y) take into account the
perturbative O(αs) corrections and the O(1/m) terms re-
spectively 3. Following [17], we used for m̄ the reduced
charm-bottom mass i.e., m̄ = 2.26 GeV.

We are now ready to introduce the two models that
we will use in order to study the form-factor dependence
of the FP. We denote these models as LINSR and NRSX:

– LINSR: the first model uses the heavy-heavy form fac-
tors defined in (12), taking the βi(y) from [17] and
neglecting the O(1/m) corrections, i.e., γi(y) = 0. For
the IW function, the simplest form is assumed, namely

ξ(y) = 1 − ρ2(y − 1) . (13)

For the heavy-light form factors, LINSR uses those
computed with light-cone QCD sum rules [18].

– NRSX: the second model is the one defined in [19] and
makes use of the functions βi(y) and γi(y) calculated in
[16] and [17], respectively. The IW function is obtained
using a relativistic oscillator model, which gives

ξ(y) =
2

y + 1
exp

{
− A

y − 1
y + 1

}
, (14)

where A = 2ρ2 − 1. Concerning the heavy-light form
factors, NRSX improves the old WSB model [20] by
implementing, for q2 ∼ q2

max, the expected heavy quark
scaling laws, see [19] for details.

We end this section with a word of comment about the
parameter ρ2 entering (13) and (14). In both models, ρ2

is defined as the slope of the IW function at the zero-recoil
point (i.e., y ≡ vB · v = 1), namely

ρ2 ≡ − d

dy
ξ(y)

∣∣∣∣
y=1

. (15)

The value of ρ2 is related to the semileptonic differential
rate for B → D∗lν,

dΓ (B → D∗lν)
dy

=
G2

F

48π3 M3
D∗(MB − MD∗)2

√
y2 − 1(y + 1)2

×
[
1 +

4y

y + 1
1 − 2yr + r2

(1 − r)2

]
|Vcb|2F(y)2, (16)

3 The computation of the 1/m corrections is model depen-
dent, relying on the evaluation of a set of hadronic matrix
elements of higher dimensional operators in the HQET.
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where r ≡ MD∗/MB and F(y) is an effective semilep-
tonic form factor. The latter is a calculable function of
the ξi(y)s. To make contact with experiments, one defines
the slope

ρ̂2 ≡ − 1
F(1)

d

dy
F(y)

∣∣∣∣
y=1

, (17)

which can be extracted from the measurement of the semi-
leptonic differential rate.

The relation between the experimental slope ρ̂2 and
the theoretical parameter ρ2 depends on the model used
for the calculation of (16). We found

LINSR ρ2 = ρ̂2 − 0.13,

NRSX ρ2 = ρ̂2 + 0.084, (18)

to be compared with the results of [21], ρ2 = ρ̂2 − (0.14±
0.02) + O(1/m) and ρ2 = ρ̂2 ± 0.2 respectively.

In the next section, we will study the dependence of
our results on the physical slope ρ̂2, rather than ρ2.

3 Fitting Cabibbo-allowed decay modes

This section contains the results of our phenomenological
analysis of Cabibbo-allowed B decays, focused on the rôle
of heavy-heavy form factors. We proceed as follows:

– we show that the best fit to the BR(B → Dπ) and
BR(B → KJ/Ψ) is obtained for different values of ρ̂2,
depending on the model used for computing heavy-
heavy form factors.

– we use the ratios Rπ(B → Dπ) introduced in [24], see
below, and show that, by using them instead of the
BR(B → Dπ), it is possible to fit the FP (almost)
independently of ρ̂2. This method gives our best de-
termination of the FP, free from theoretical uncertain-
ties coming from the assumptions made for the heavy-
heavy form factors.

– using the (ρ̂2-independent) FP, we perform a fit to the
BR(B → Dπ) in order to extract a preferred range
for the value of ρ̂2; the results are model dependent,
in agreement with our first finding.

– we show that the different ranges of ρ̂2 actually corre-
spond to the same values of the relevant form factors
at q2 = M2

π ∼ 0. Using the HQET, the latter can be
determined by factorization applied to B → Dπ de-
cays and may be compared with direct measurements
from semileptonic decays.

The relevant decay modes which we use in the fits are
listed in Table 3. It is well known that, in the factoriza-
tion approximation, only two combinations of DE and CE
appear in the amplitudes of these decays. This feature is
taken into account by the parameters a1 and a2 introduced
by [6]. The relation between a1 and a2 and our parameters
is given by

a1 = α
(
C2 + ξeiδξC1

)
, a2 = α

(
C1 + ξeiδξC2

)
(19)

Table 3. Experimental branching ratios [8,22,23] of decay
modes to be used in the fit of the parameters α, ξ and δξ.
The classification of non-leptonic channels according to their
dependence on a1 and a2 is also shown. The channels marked
with ? have been used for the fit of the ratios defined in (20)

Channel BR ×105

? Bd → π+D− 300 ± 40
? Bd → π+D∗− 276 ± 21
? Bd → ρ+D− 790 ± 140
? Bd → ρ+D∗− 670 ± 330
Bd → D+

s D
− 800 ± 300

Type I Bd → D+
s D

∗− 960 ± 340
∝ |a1|2 B+ → D+

s D̄
0 1300 ± 400

B+ → D+
s D̄

∗0 1200 ± 500
Bd → D∗+

s D− 1000 ± 500
Bd → D∗+

s D∗− 2000 ± 700
B+ → D∗+

s D̄0 900 ± 400
B+ → D∗+

s D̄∗0 2700 ± 1000
Bd → K0J/ψ 89 ± 12

Type II Bd → K∗0J/ψ 135 ± 18
∝ |a2|2 B+ → K+J/ψ 99 ± 10

B+ → K∗+J/ψ 147 ± 27
? B+ → π+D̄0 530 ± 50

Type III ? B+ → π+D̄∗0 460 ± 40
∝ |x1a1 + x2a2|2 ? B+ → ρ+D̄0 1340 ± 180

? B+ → ρ+D̄∗0 1550 ± 310

q2 d
dq2BR(B → D∗l+ν) d

dq2BR(B → Dl+ν)
(GeV−2) (GeV−2)

m2
π (0.237 ± 0.026) × 10−2 (0.35 ± 0.06) × 10−2

m2
ρ (0.250 ± 0.030) × 10−2 (0.33 ± 0.06) × 10−2

m2
Ds

(0.483 ± 0.033) × 10−2 –
m2

D∗
s

(0.507 ± 0.035) × 10−2 –

where C1 and C2 are the Wilson coefficients of the oper-
ators defined in (2) 4. In Table 3, the decay modes are
organized according to the standard classification in three
classes. Amplitudes of Type I, II and III decay modes are
proportional to |a1|, |a2| and |x1a1 + x2a2| respectively,
where xi are generic, process-dependent coefficients.

Given the structure of the amplitudes, we have to fit
decay modes of all the three classes in order to fully de-
termine the FP. Note that the three classes have a dif-
ferent dependence on the form-factors. While Type-II de-
cays always involve a heavy-light transition, heavy-heavy
form factors enter Type-I modes only. The latter is a gen-
eral feature, since Type-I transitions are always driven by
charged currents and are therefore proportional to a1. In
general Type-III modes involve transitions of both sorts.
In our parameterization, Type-I modes essentially fix α,

4 Notice that our operator basis differs from the one of [6]
by the trivial exchange Q1,2 ↔ Q2,1.
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Fig. 1. ρ̂2 dependence of the minimum χ2/dof from the fit of
ξ to BR(B → Dπ) and BR(B → KJ/Ψ) assuming α = 1 and
δξ = 0. Both LINSR and NRSX results are shown

while both Type II and III are needed to constrain ξ and
δξ.

The assumptions on the momentum dependence of the
heavy-heavy form factors introduce large uncertainties in
the determination of the FP from this fit. The strong cor-
relation between the values of ρ̂2 and the FP has not been
emphasized in previous work on this subject. This is more
easily shown fitting only the effective number of colour
as done in the old literature 5. In our parametrization
this corresponds to assuming α = 1 and δξ = 0 and to
fitting ξ only. The result of this fit is shown in Fig. 1,
where minimum values of χ2/dof from the fit of ξ to the
BR(B → Dπ) and to the BR(B → KJ/Ψ) are plotted as
a function of ρ̂2. It is apparent that the best fit is obtained
for quite different values of ρ̂2, and corresponds to differ-
ent values of ξ, depending on the model used to compute
the heavy-heavy form factors. Consequently, in general,
the FP fitted using BRs at fixed ρ̂2, as usually done in
the literature, suffers from a large theoretical error, which
was previously hidden in the choice of a specific model
when fitting the data. The second important remark is
that a comparison of the value of ρ̂2, the “physical” slope
measured in semileptonic decays, with that extracted from
non-leptonic decays, is not a good test of factorization
since, in the latter case, the result is model dependent.

To circumvent this problem in the determination of
the FP, instead of the Type-I and Type-III BRs, we fit
the ratios

RM (B → D(∗)M) =
BR(B → D(∗)M)

d
dq2 BR(B → D(∗)lν)|q2=m2

M

, (20)

5 Had we also fitted α, the resulting minimum χ2/dof would
have been almost independent of ρ̂2, since α easily compensates
the variation of the form factors with ρ̂2. Still, the fitted value
of α would have been strongly ρ̂2 dependent.

Table 4. Results of the fit using Dπ semileptonic ratios and
BR(B → KJ/Ψ) for three different values of the slope ρ̂2 and
the two form-factor models, LINSR and NRSX, described in
the text. For each model, two fits have been performed, the
difference being the inclusion of Type-III Dπ modes, which
introduce some ρ̂2 dependence

LINSR ρ̂2 = 0.80 ρ̂2 = 0.90 ρ̂2 = 1.00
Rπ(B → Dπ) χ2/dof 1.36
Type I α 1.02

+ ξ 0.45
BR(B → KJ/ψ) δξ 0.00
Rπ(B → Dπ) χ2/dof 1.40 1.39 1.42
Type I+III α 1.05 1.04 1.03

+ ξ 0.44 0.44 0.44
BR(B → KJ/ψ) δξ 0.00 0.00 −0.26

NRSX ρ̂2 = 1.25 ρ̂2 = 1.35 ρ̂2 = 1.45
Rπ(B → Dπ) χ2/dof 0.39
Type I α 1.01

+ ξ 0.38
BR(B → KJ/ψ) δξ 0.00
Rπ(B → Dπ) χ2/dof 0.71 0.70 0.68
Type I+III α 1.04 1.04 1.03

+ ξ 0.38 0.38 0.38
BR(B → KJ/ψ) δξ 0.00 0.00 0.00

where M = π, Ds, . . . is the emitted meson. The advan-
tage of using (20) is that in these ratios the heavy-heavy
form factor dependence drops out completely for Type-I
decays and is strongly reduced for Type III. In practice,
we used the ratios corresponding to the non-leptonic de-
cays marked with ? in Table 3. In the fit, besides the ratios
RM for Type-I and Type-III, we also use all the BRs of
the Type-II decays.

The results of the fit are shown in Table 4 for NRSX
and LINSR. We do not include the D(∗)D

(∗)
s modes for

two reasons: on the one hand, their contribution to the
total χ2 is suppressed by the large experimental errors in
the measured BRs; on the other, we want to use them to
extract the decay constants fDs

and fD∗
s
.

For both choices of form factors, we give the results
of two different fits: the first includes all types of decays
and determines the FP α, ξ and δξ. It retains, however,
a small residual dependence on heavy-heavy form factors,
i.e., on ρ̂2. The second is a fit to Type-I and -II chan-
nels only, which is totally independent of ρ̂2. The results
are quite close. Note that the second fit only involves two
combinations of the three FP. As a consequence we have
to fix one parameter in order to extract the other two: we
choose to put δξ = 0, quite consistent with what has been
found with the first fit. As a consistency check, we have
also verified that different values of δξ do not appreciably
change the results 6. In Table 4 we show the fitted values

6 The fit is not very sensitive to δξ, thus it cannot fix this
parameter very precisely; see the final results in (21).



M. Ciuchini et al.: Heavy-heavy form factors and generalized factorization 49

0.2 0.4 0.6 0.8 1

0.8

1

1.2

1.4

1.6

1.8

ξ

ρ̂2

Fig. 2. Contour plots of χ2/dof in the plane (ξ, ρ̂2), obtained
from a two-parameter fit to the non-leptonic B → Dπ decays.
The other parameters (α and δξ) have been fixed by the fit
of Table 4 in a ρ̂2-independent way. The solid curves refer to
LINSR, the dashed ones to NRSX. The different contours cor-
respond to χ2/dof = (1.5, 2, 3) × χ2

min/dof

of the FP for several choices of ρ̂2, for both NRSX and
LINSR. As mentioned above, the results turn out to be,
within a given model, independent of ρ̂2.

Having fitted the FP in a ρ̂2-independent way, we now
use the BR(B → Dπ) to extract from the data a preferred
range of ρ̂2. Notice that δξ is not a critical parameter, since
the results of the fits are not very sensitive to its value,
and that the values of α and ρ̂2 are trivially correlated,
because the amplitudes only depend on the product of α
with the effective form factors at q2 ∼ 0. Therefore, we
choose to perform a two-parameter fit of ξ and ρ̂2 using
the BR(B → Dπ), at fixed values of δξ and α, as ex-
tracted from the previous fit of Table 4. In this way, we
can study the correlations in the (ξ–ρ̂2) plane and check
the consistency of the determination of ξ using different
fitting procedures.

Figure 2 shows the contour plots of χ2/dof in the
(ξ, ρ̂2) plane for NRSX and LINSR. The fitted value of
ξ is consistent with Table 4 and the preferred ρ̂2 is larger
using NRSX than LINSR. Moreover, the LINSR BRs are
steeper functions of ρ̂2, consistent with Fig. 1. This obser-
vation justifies the choice of the set of values of ρ̂2 used in
Table 4.

It is not surprising that the fit to the BR(B → Dπ)
gives values of ρ̂2 which are model dependent. The fit only
fixes the values of the relevant heavy-heavy form factors
fi = f+, A0, . . . at q2 = M2

π ∼ 0 7. These form factors

7 Type-III modes actually depend on heavy-light form fac-
tors also, which however appear in color suppressed contribu-
tions to the total amplitude.

can be expressed in terms of the ξis at q2 ∼ 0 which, in
turn, are related to the IW function ξ(y) by heavy quark
symmetry, see (12). The relation between the fitted form
factors at q2 = M2

π and the values of ξi(1), which are fixed
by the HQET, depends on the functional form adopted for
the IW function ξ(y) and on the value of ρ2. Thus, dif-
ferent values of ρ̂2 are obtained by fitting the data with
different models. In particular, we find that the main dif-
ference between NRSX and LINSR relies on the choice of
the IW function, (13) and (14), rather than in the inclu-
sion of 1/m corrections. Plotting the results of the fit in
the planes (ξ, fi), through (8)–(12), we obtain almost the
same determination of the fi(M2

π) with both NRSX and
LINSR, as shown in Figs. 3 and 4. Although we have con-
sidered only two models in the present study, we believe
that this result is quite general.

We stress again that constraints on the heavy-heavy
form factors can only be obtained by combining the re-
sults of two independent fits: the first which fixes the FP
using the ratios Rπ, that are essentially independent on
the model used to calculate the form factors; and the sec-
ond which fixes the form factors using the BR(B → Dπ)
at fixed values of the FP.

The comparison of the heavy-heavy form factors di-
rectly measured in semileptonic decays at q2 = M2

π ∼ 0
with the results in Figs. 3 and 4, and Table 1, is a real test
of generalized factorization in B → Dπ decays, indepen-
dent of the choice of the IW function and of the value of
ρ̂2. This checks the assumptions we made for computing
hadronic matrix elements as described in the previous sec-
tions. Since we use the HQET relations coming from (12),
we are left with only one independent form factor, namely
the IW function. Therefore, the only form factor directly
measured at q2 = 0, f+(0), already allows a test of our
approach. Its value, f+(0) = 0.66 ± 0.06 ± 0.04 [8], shown
as a band in the upper plots of Fig. 3, agrees well with
the result of the fit. The extraction of the other form fac-
tors at q2 = 0 from the CLEO data is under way [25] and
would allow a check of the HQET relations among B → D
form factors near the maximum recoil point. Notice that,
at least in principle, the fitting procedure described in this
section could be used to independently extract the values
of all the form factors at q2 = M2

π , just including them
among the FP. In this case, the comparison of each form
factor with the measurements from semileptonic decays
would be a test of generalized factorization, independent
of the HQET relations (12). Unfortunately, the present
accuracy of the data does not allow a separate determina-
tion of the different form factors.

From the discussion above, we conclude that the
HQET-inspired parameterization of the heavy-heavy form
factors in terms of their value at q2

max and of the slope
ρ̂2, which is commonly adopted by experimental collab-
orations and successfully applied to semileptonic decays,
is not the most appropriate choice for the factorization
analysis of non-leptonic decays.

With the results for the FP given in (21), we can pre-
dict BRs of as-yet-unmeasured decay channels, having one
D and one light meson in the final state. We list our
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Fig. 3. Determination of various B → Dπ form factors at q2 = M2
π as functions of ξ. These plots are obtained from Fig. 2

using the relations connecting heavy-heavy form factors to the Isgur-Wise function, (8)–(12). LINSR (NRSX) form factors are
shown in the left (right) column. The different contours correspond to χ2/dof = (1.5, 2, 3) × χ2

min/dof

predictions in Table 2, where the ranges in square brack-
ets give an estimate of the theoretical uncertainties. They
were found by allowing values of χ2/dof up to three times
larger than the minimum. Flavor SU(3) symmetry justi-
fies the use of parameters obtained from B → Dπ and
B → KJ/Ψ decays to the decays listed in Table 2. Large
flavour effects are unlikely, since the factorized amplitudes
already account for some SU(3) breaking.

Finally, we summarize the result of our fits of the FP
by quoting their best values and ranges of variation, ob-
tained by allowing values of χ2/dof up to three times
larger than the minimum. The comparison between the
two different models, NRSX and LINSR, gives us an es-
timate of the theoretical uncertainties due to the form-
factor model dependence. As discussed before, these FP
parameters are those obtained using the coefficients func-
tions computed at the NLO in the MS scheme with µ = 5
GeV. We obtain

LINSR NRSX
α 1.04 [0.9–1.2] 1.04 [1.0–1.1]
ξ 0.44 [0.2–0.5] 0.38 [0.2–0.4]
δξ 0.0 [-1.5–1.5] 0.00 [-1.0–1.0]
|a1| 1.04 [0.9–1.3] 1.05 [1.0–1.2]
|a2| 0.31 [0.0–0.7] 0.25 [0.0–0.4]
χ2

dof 1.4 [1.4–4.2] 0.7 [0.7–2.1]
ρ̂2 0.91 [0.8–1.0] 1.34 [1.1–1.5]

(21)

For the sake of comparison with previous literature, we
have also shown the values of |a1| and |a2|, computed using
(19). It is worth noticing that exact factorization, namely
α = 1, ξ = 1/3 and δξ = 0, would give values of χ2/dof
3–4 times larger than the fits which use the generalized
factorization, for both the models considered here.
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Fig. 4. The same plots as in Fig. 3 for A0, A1 and A2

4 Decay constants from DDs decays

In this section, we extract the meson decay constants fDs

and fD∗
s

and compare the results with available measure-
ments and lattice results.

We consider the semi-leptonic ratios RDs
(B→D(∗)D+

s )
and RD∗

s
(B → D(∗)D∗+

s ), introduced in the previous sec-

tion, and define the non-leptonic ratios [7]

RP
Ds

(B → D(∗)D+
s ) =

BR(B → D(∗)D+
s )

BR(B → D(∗)π+)
,

RV
D∗

s
(B → D(∗)D∗+

s ) =
BR(B → D(∗)D∗+

s )
BR(B → D(∗)ρ+)

. (22)
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Table 5. Decay constants extracted from both semileptonic and non-
leptonic ratios, (20) and (22). Both LINSR and NRSX results are shown.
The first error comes from the experimental ones on the BRs, while the
second is a “theoretical” error obtained by varying the FP in a range
corresponding to values of χ2/dof up to three times larger than the
minimum one

LINSR NRSX
MeV semileptonic nonleptonic semileptonic nonleptonic
fDs 304 ± 42 ± 47 253 ± 24 ± 35 297 ± 41 ± 26 267 ± 25 ± 21
fD∗

s
277 ± 36 ± 43 250 ± 31 ± 16 274 ± 36 ± 24 261 ± 32 ± 9

Up to color-suppressed terms, the factorized amplitudes
of the decay modes considered here are proportional to
fDs/fπ or to fD∗

s
/fρ. Whereas the ratios RM of (20) are

defined in such a way that the main form-factor depen-
dence drops out, in the non-leptonic ratios of (22), the
form factors appearing in the numerator and denominator
are evaluated at different q2 and do not cancel out. In this
case, however, it is the dependence on the FP that tends
to cancel, as long as penguin contributions are neglected.
The non-leptonic ratios above are exactly independent of
ξ and δξ only if charged B+ decays are not considered, as
done in [7]. In our case, we prefer to double the number of
channels in the fit, by including charged B+ decays, at the
cost of introducing a small dependence on FP and on the
D(∗) decay constants, both appearing in color suppressed
terms in the decay amplitudes. We take fD = 200 MeV
and fD∗ = 220 MeV [26].

In general, all DDs modes suffer from a further the-
oretical error. This uncertainty originates from using the
same FP, obtained from the fit of Sect. 3, in the calcula-
tion of the relevant BRs entering the non-leptonic ratios.
Since in DDs decays, the emitted meson is heavy, one may
expect, according to the LEET approach, larger violations
to the factorization limit. In other words, in this case the
FP may significantly differ from those fixed by the Dπ
and KJ/Ψ modes. This is a further source of theoretical
uncertainty, which we are not able to estimate at present.

Using the semileptonic ratios RDs
(B → D(∗)D+

s ) and
RD∗

s
(B → D(∗)D∗+

s ) and the non-leptonic ratios of (22),
the form factors determined from the fit to the BR(B →
Dπ) and the FP from (21), we have extracted fDs

and fD∗
s
.

Results are collected in Table 5, where we have separately
shown the uncertainties coming from the experimental er-
rors on the BRs and from the errors on the FP. As before,
in order to estimate this source of theoretical uncertainty,
we present results obtained using both LINSR and NRSX.

From Table 5, we quote

fDs
= 270 ± 35 MeV, fD∗

s
= 260 ± 30 MeV, (23)

where the errors indicatively account for all the sources of
uncertainty.

The value obtained for fDs is in reasonable agreement
with the data [9], fDs = 250 ± 30 MeV, and with the
lattice results fDs = 218+20

−14 MeV (quenched), 235+22+17
−15−9

MeV (unquenched) [10], although within large experimen-
tal and theoretical uncertainties. Our prediction for fD∗

s
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Fig. 5. Charming penguin effect on the determination of fDs

from semileptonic ratios using NRSX. The difference δfDs =
fDs(ηL, δL)/fDs(0, 0) − 1 is plotted as a function of ηL at dif-
ferent values of δL

is in good agreement with the quenched lattice determi-
nation, fD∗

s
= 240 ± 20 MeV [11].

Comparing the NRSX results of Table 5 with the anal-
ysis of [7], one finds differences of the order of 10–15%.
Besides our inclusion of the charged decay modes, this
difference arises because we take into account contribu-
tions from penguin operators, which were neglected in [7].
These contributions mount up to 20% in some channels, in
particular to those used to determine fDs

. For this reason,
it is worth testing the effect of charming-penguin contrac-
tions in the determination of the leptonic decay constants.
We parameterize the effects of charming penguins as in
[1], by using two real quantities ηL and δL, denoting the
relative size and the phase of the charming-penguin am-
plitudes with respect to the corresponding emission ones.
In Fig. 5, we plot δfDs

= fDs
(ηL, δL)/fDs

(0, 0) − 1 as a
function of ηL for various choices of δL, using NRSX. For
ηL ∼ 0.2–0.3 and δL ∼ π, as suggested by B → Kπ de-
cays [1], |δfDs

| is about 20%, larger than the (previously)
estimated theoretical error on fDs . Of course, there is no
compelling theoretical reason to use parameters extracted
from Kπ modes in this analysis. This exercise shows, how-
ever, that penguin effects are not negligible and should be
included, at least as a further source of theoretical uncer-
tainty, at the level of 10%, in addition to the one in (23).
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5 Conclusions

In this paper, we have introduced a parameterization of
the hadronic matrix elements, that generalizes the one of
[1] and expressed the amplitudes relevant to the calcula-
tion of Cabibbo-allowed non-leptonic B decays in terms of
factorized matrix elements and three real parameters α, ξ
and δξ. We have shown the connection of our parameter-
ization with the generalized factorization of [7]. In order
to fix these parameters, we have re-analysed B → Dπ and
B → KJ/Ψ data.

We have found that the fit to B → Dπ decays sub-
stantially depends on the model describing the Isgur-Wise
function ξ and on the value of its slope. This dependence
has been drastically reduced by fitting the ratios in (20).
We have shown that, once that the FP are fixed in this
way, a best fit to the non-leptonic BR(B → Dπ) de-
termines the values of heavy-heavy form factors at q2 =
M2

π ∼ 0. This provides a constraint on the HQET models
which are currently used for the heavy-heavy form factors.
We have shown that, in general, different models require
different values of ρ̂2 to reproduce the fitted values of the
form factors. Consequently, a meaningful test of factoriza-
tion is only provided by the comparison of the values of
the form factors extracted from non-leptonic decays with
those directly measured, at small values of q2, in semilep-
tonic decays. The only form factor directly measured at
q2 = 0, f+(0) = 0.66±0.06±0.04 [8], is in good agreement
with our finding, suggesting that the generalized factoriza-
tion works well in the case of B → Dπ decays.

Our best determination of the FP can be found in (21),
where an estimate of the theoretical uncertainties is also
given. Using these FP, we have also presented a set of
predictions for the BRs of as-yet-unmeasured B decays,
including Dπ, Dρ, DK(∗) modes, see Table 2.

Finally, using non-leptonic ratios of (20) and (22), we
have extracted the charmed meson decay constants from
the BR(B → DDs), finding

fDs = 270 ± 45 MeV, fD∗
s

= 260 ± 40 MeV, (24)

where errors indicatively account for all sources of uncer-
tainty present in the fit, including charming penguins.
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